CultureMath
La simulation numérique de l'équation de la chaleur pose parfois quelques problèmes, et pas seulement de capacité de calcul. Nous allons voir en effet que tous les algorithmes ne sont pas équivalents, loin de là...
La théorie des épidémies fournit de nombreux systèmes d'équations différentielles ou aux dérivées partielles. On a d'autre part une idée intuitive du comportement de ces phénomènes, de la propagation de ces maladies. Y interviennent des phénomènes de contamination, de diffusion... Nous allons ici prendre l'exemple de la diffusion de la rage dans une population de renards, et en présenter quelques modèles assez simples.
La théorie des épidémies fournit de nombreux systèmes d'équations différentielles ou aux dérivées partielles. On a d'autre part une idée intuitive du comportement de ces phénomènes, de la propagation de ces maladies. Y interviennent des phénomènes de contamination, de diffusion... Nous allons ici prendre l'exemple de la diffusion de la rage dans une population de renards, et en présenter quelques modèles assez simples.
La simulation numérique ne pose pas toujours seulement des problèmes de capacités de calcul : même avec des ordinateurs de plus en plus puissants, l'opération laisse encore des problèmes au mathématicien ! Il s'agit en effet de mettre en place des algorithmes qui fonctionnent, et nous allons voir que, même dans des cas très simples, on ne peut pas faire n'importe quoi.