Programmes

Ayant construit les rationnels, voici bien sûr les réels, par la méthode des suites de Cauchy. Comme pour les rationnels, il faut vérifier que le nouvel ensemble étends celui des rationnels, et que les opérations, la relation d'ordre, la valeur absolue, se prolongent à l'ensemble des réels. Puis, sans bien sûr épuiser le sujet, nous nous penchons sur les propriétés topologiques de l'ensemble des réels : complétude, propriété de la borne supérieure ; propriétés qui sont à la base de toute l'analyse réelle.

Ayant construit les entiers naturels, quoi de plus naturel que de passer aux entiers relatifs. Là aussi, la présentation choisie est la plus axiomatique et rigoureuse possible. Partant de la définition des relatifs, vus comme des classes d'équivalence pour une relation d'équivalence bien choisie sur les couples d'entiers naturels, on en arrive peu à peu jusqu'à l'arithmétique élémentaire.

Dans la droite ligne des constructions précédentes, nous construisons ici l'ensemble des rationnels, à partir d'une relation d'équivalence sur les couples de relatifs. Nous définissons les opérations plus et multiplier sur ce nouvel ensemble, la relation d'ordre, etc, en montrant que tout ceci prolonge en réalité les opérations déjà définies pour les relatifs.

Nous présentons ici une définition et l'étude des propriétés élémentaires de l'ensemble des entiers naturels, définis dans le cadre axiomatique de la théorie des ensembles. Nous utilisons ces propriétés sans y penser, elles nous semblent évidentes... Mais peut-être méritent elles parfois que l'on s'y attarde quelque peu ?

Si l'on prends six personnes au hasard, alors trois d'entre elles se connaissent, ou alors on peut en trouver trois dont aucune ne se connaissent. Cette remarque, en apparence anodine, permet de déboucher sur toute une théorie combinatoire. En effet, reformulée en termes de graphe, cela signifie que, si l'on colorie les arêtes du graphe complet à six sommet en deux couleurs, alors on peut trouver un triangle dont les trois arêtes sont de la même couleur. La question se pose alors pour d'autres type de configurations, et l'on verra que le résultat reste valable à condition de colorier les arêtes d'un graphe suffisamment gros.

Le "Berlekamp's switching game'' est un jeu inventé par Elwin R. Berlekamp et David Gale. Son support est un tableau carré de m*m ampoules, contrôlées par 2m interrupteurs frontaux, un pour chaque ligne ou colonne. Quand un interrupteur est basculé, les ampoules qui étaient allumées dans la ligne ou la colonne correspondante sont éteintes, et celles qui étaient éteintes sont allumées. Le jeu consiste à trouver, pour un état initial donné, le nombre minimal d'ampoules allumées après manipulation à volonté des interrupteurs commandant les lignes et les colonnes, puis à maximiser ce nombre par un choix judicieux de l'état initial.

La percolation est un phénomène physique que l'on rencontre bien sûr lorsque l'on étudie le passage de la vapeur à travers du café, mais également des situations aussi diverses que la propagation d'un incendie de forêt, la circulation automobile, la conductivité électrique d'une alliage... Nous introduisons ici cette théorie, partant de la notion de graphe aléatoire. Nous verrons notamment qu'il existe une notion de probabilité critique, c'est-à-dire un seuil tel qu'en-dessous la probabilité d'avoir un phénomène de percolation est nulle, et égale à 1 au-delà.
Nous nous pencherons plus particulièrement sur les cas des arbres infinis et des réseaux cubiques.

Les sondages d'opinions sont devenus partie intégrante de notre quotidien. Tout le monde sait comment ils sont effectués, dans les grandes ligne. Mais que signifient-ils exactement ? Quel crédit leur apporter ?
En nous basant sur cet exemple fondamental, nous introduisons dans ce texte la notion d'inférence statistique, en essayant de la décortiquer au maximum. Notre but est en l'occurrence de définir ce que peut-être une marge d'erreur, un intervalle de confiance.

Un peu de théorie des graphes, où comment venir à bout d'un digicode plus vite que n'importe qui. Nous nous intéressons ici à la question de savoir combien de chiffres il faut taper successivement sur un digicode pour être sûr d'avoir tapé toutes les combinaisons possibles.

À quelle condition peut-on dessiner un graphe dans le plan, sans que ne se croisent des arêtes dudit graphe ? Le problème est assez classique : on connaît des condition nécessaires, qui dérivent de la formule d'Euler. Nous introduisons ici ces résultats, en montrant quelques applications sur des graphes particuliers.