Programmes

Nous présentons ici un panorama des résultats et conjectures les plus classiques autour de la notion de transcendance. Ce n'est bien sûr pas une revue exhaustive de l'état de la recherche dans ce domaine, mais les problèmes dont il est ici question, quoique simples dans leur formulation, restent au coeur des préoccupations actuelles.

C'est en essayant de trouver une multiplication sur les triplets de réels (la multiplication sur les complexes correspondant à une multiplication sur les couples de réels) qu'Hamilton découvrit en 1843 les quaternions sur le "Brougham Bridge" à Dublin, gravant sa découverte sur une pierre du pont. L'obstacle majeur était que les quaternions sont en fait représentés par des quadruplets (et non des triplets) de réel, ce qui fait en réalité du corps des quaternions une extension de celui des complexes, même si on perd au passage la commutativité de la multiplication.

La question est de savoir s'il existe une méthode qui, étant donné un objet géométrique W, permet de savoir si W peut être décrit par des équations algébriques, à des changements qui ne modifient pas sa topologie près. Ce problème fait intervenir de manière fondamentale la notion de triangulation, et plus généralement mène à l'introduction de quelques notions importantes de topologie qui peuvent souvent se comprendre à l'aide de dessins.

Une équation n'est rien d'autre qu'une égalité entre deux membres. Souvent, il s'agit de déterminer une certaine quantité, connaissant simplement une égalité qui fait intervenir cette quantité inconnue. On parle d'équation algébrique lorsque l'on cherche à déterminer les racines d'un polynôme. Nous allons ici nous intéresser plus spécifiquement à ce type d'équation, et voir notamment des méthodes générales pour résoudre les équations algébriques de degré allant de 1 à 4.

La théorie des ensembles est entre autres choses une tentative de formalisation, dans un système d'axiomes assez simples et si possible intuitifs, de l'ensemble des connaissances mathématiques. En particulier, l'essentiel de l'arithmétique ou de l'analyse se déduirait de façon élémentaire, quoique assez longue, de cette axiomatique.

La théorie de l'approximation diophantienne est l'étude des propriétés d'approximation de nombres par des rationnels. Elle intervient dans de nombreux domaines des mathématiques. Nous présentons ici quelques premiers résultats d'approximation par des rationnels, en traitant d'abord le cas d'un seul réels, puis de plusieurs ou, ce qui revient au même, d'un vecteur dans un espace vectoriel réel de dimension finie.

La démonstration la plus classique de ce résultat, par l'absurde, qui consiste à exhiber un nombre premier à tous les autres, est certes très élégante, mais assez contre-intuitive. Comment y penser si on ne la connaît pas déjà ? Celle que nous présentons ici, sans être radicalement différente, semble plus naturelle.

L'algorithme RSA, inventé en 1978, est plus que jamais d'actualité, puisqu'il reste 20 ans plus tard la cheville ouvrière de nombreux protocoles de cryptographie utilisés pour la transmission de tout type de données. Il est basé sur un principe d'inversion modulo un très gros nombre, lui-même produit de deux très gros nombres premiers.

Dans ce texte, nous allons présenter la théorie des cardinaux, du moins son début : définition, cardinal d'un ensemble et théorème de Cantor-Bernstein, addition et multiplication cardinale. En revanche, nous passerons sous silence le problème de l'exponentiation cardinale, qui est autrement plus compliquée.

Nous introduisons la notion d'ordinal de la façon la plus élémentaire possible, afin d'en présenter quelques propriétés, qui nous ont paru les plus importantes. Nous ne prétendons pas en faire une étude complète : par exemple, nous passons sous silence les notions d'addition, de multiplication ou d'exponentiation ordinale, qui sont des notions plus difficiles qu'il n'y paraît et mériteraient plus de travail.