Supérieur

[1] Approximation diophantienne et réseaux
[2] Une démonstration originale de l'infinité de l'ensemble des nombres premiers
[3] Sur l'algorithme RSA
[4] Arithmétique
[5] Fermat revisité
[6] Le problème des nombres gelés de Saint-Exupéry
[7] Les mathématiques du mouvement Introduction informelle aux systèmes dynamiques 
[8] Petits pièges de la simulation numérique
[9] Le théorème de Sharkovskii
[10] Arbres et dérivée d'une fonction composée
[11] Homographies et suites récurrentes
[12] L'intégration selon Riemann et selon Lebesgue
[13] Signal numérique et théorie de l'échantillonnage
[14] Les intégrales de Coxeter
[15] Equirépartition d'une suite de nombres
[16] Addendum sur l'équirépartition
[17] Racine carrée fonctionnelle
[18] Le lemme de Baire
[19] Le théorème de JUEL et la surface de CLEBSCH
[20] Critères d'Ermakov
[21] Le produit d'Hadamard de deux séries entières
[22] Racine carrée fonctionnelle
[23] Jauge d'une cuve à Mazout
[24] Sur les nombres constructibles
[23] Construction des polygones réguliers
[26] Courbure des surfaces triangulées
[27] Le problème des 5 cercles
[28] Reconnaître effectivement les Ensembles Algébriques Réels
[29] Pour nouer, il faut courber
[30] Autour des triangles inscrits sur une hyperbole équilatère
[31] Gaspard Monge, de la planche `a dessin aux lignes de courbure
[32] Loi de groupe dans un triangle
[33] Les épi ou hypo trochoïdes
[34] Géométrie sur une Strophoïde
[35] Fermeture Hexagonale
[36] Cubiques circulaires passant par leurs foyers singuliers
[37] Combien de fois faut-il battre un jeu de cartes ?
[38] Avant le référendum
[39] La percolation
[40] Processus de branchement et descendance d'un individu
[41] Marches aléatoires sur Z
[42] Le jeu de Pile ou Face
[43] Le Berlekamp's switching game
[44] Jeux sur les graphes et théorème de Ramsey
[45] Jeux et stratégies
[46] Equations algébriques
[47] Intégration de polynômes, points de Gauss
[48] Les tonalités musicales vues par un mathématicien
[49] Loi de groupe sur une surface
[50] La transformation du Boulanger
[51] Rubik’s cube, groupe de poche
[52] Compte de rebonds
[53] La toupie Tippe-Top
[54] Détermination du sexe selon la température chez les crocodiles
[55] Calcul Tensoriel. Application à la relativité.
[56] Equations de Maxwell et formes différentielles, vers la relativité restreinte
[57] Les motifs des pelages d’animaux
[58] Les cercles de Tücker
[59] Interactions entre espèces, modèle de Lotka-Volterra
[60] Équation de la chaleur : traitement numérique
[61] Simulation numérique de l'équation de la chaleur
[62] Du bruit dans les images
[63] Image and movie denoising by nonlocal means
[64] Construction des entiers naturels
[65] Les axiomes de Zermelo-Fraenkel
[66] Entiers relatifs
[67] Nombres rationnels
[68] Nombres réels
[69] Nombres complexes
[70] Quaternions
[71] Ordinaux
[72] La construction des Réels par les coupures de Dedekind
[73] Laplace, Turing et la géométrie impossible du "jeu de l'imitation"
[74] La divination sikidy à Madagascar
[75] Les généralisations de la notion mathématique d'intégrale au 19e siècle
[76] Le processus d'abstraction dans le développement des premières théories de la mesure
[77] Les deux premiers journaux mathématiques français: les Annales de Gergonne (1810-1832) et le Journal de Liouville (1836-1845)
[78] Pourquoi, pour qui enseigner les mathématiques? Une mise en perspective historique des finalités et des contenus de l'enseignement des mathématiques dans la société française au XXe siècle.
[79] Les matrices : formes de représentation et pratiques opératoires (1850-1930)
[80] La loi des grands nombres, le théorème de De Moivre-Laplace
[81] La formule de Stirling
[82] Urnes aléatoires, populations en équilibre et séries génératrices
[83] Zeta de 3 est irrationnel
[84] Généalogie de populations : le coalescent de Kingman
[85] Cantor et la France 
[86] Introduction à la Théorie des Groupes
[87] À la recherche de la genèse du dernier mémoire mathématique de Georg Cantor
[88] Le triangle: philosophie, histoire, mathématiques
[89] Au menu: de la géométrie à  toutes les sauces
[90] Gaston DARBOUX : « Principes de Géométrie Analytique »
[91] "Souvenirs sur Sofia Kovalevskaya" de Michèle Audin
[92] Eléments d'analyse et d'algèbre (et de théorie des nombres)
[93] Pourquoi les mathématiques sont-elles difficiles ?
[94] Souvenirs sur Sofia Kovalevskaya - interview/discussion avec Michèle Audin
[96] Analyse mathématique - La maîtrise de l'implicite
[97] Epistémologie mathématique
[98] Galois, le mathématicien maudit
[99] Les Clefs pour la PSI et la PSI*
[100] Blagues mathématiques et autres curiosités
[101] Escapades arithmétiques
[102] Le jardin des courbes - Dictionnaire raisonné des courbes planes célèbres et remarquables
[101] Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz
[102] Riemann : Le géomètre de la nature
[103] Eléments d'analyse et d'algèbre (et de théorie des nombres) (présentation par l’auteur)
[104] La construction tractionnelle des équations différentielles
[105] Géométrie analytique classique
[106] La passeggiata - Battements d'ailes au jardin du Luxembourg 
[107] Vers une nouvelle philosophie de la nature
[108] Probabilités et statistiques aujourd'hui
[109] Des Mathématiciens de A à Z
[110] Souvenirs sur Sofia Kovalevskaya (parutions)
[111] Cantor et la France
[112] Dimensions
[113] Arithmétique
[114] La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs
[115] Premiers cours de philosophie positive
[116] Une Introduction à la théorie des nombres
[117] Outils mathématiques à l’usage des scientifiques et ingénieurs
[118] Nombres : Eléments de mathématiques pour philosophes
[119] Images des Mathématiques 2004-2006
[120] Leçons de mathématiques d'aujourd'hui
[121] Zoom sur les métiers des mathématiques
[122] Autour du centenaire Lebesgue
[123] L'épistémologie : état des lieux et positions
[124] Philosophie naturelle et géométrie au XVIIe siècle
[125] Les Mathématiques dans la Cité
[126] Réduction des endomorphismes
[127] Les femmes et l'enseignement scientifique
[128] Exercices de mathématiques pour physiciens
[129] La Relativité de Poincaré de 1905
[130] L'espace physique entre mathématiques et philosophie
[131] Jacques Hadamard, un mathématicien universel 
[131] Un mathématicien d'exception
[132] Nouvelle bibliographie cournotienne
[133] Paul Painlevé (1863-1933). Un savant en politique
[134] La naissance de la théorie de l'information ou la force d'une idée simple

 
Articles du programme de Supérieur

L'algorithme RSA, inventé en 1978, est plus que jamais d'actualité, puisqu'il reste 20 ans plus tard la cheville ouvrière de nombreux protocoles de cryptographie utilisés pour la transmission de tout type de données. Il est basé sur un principe d'inversion modulo un très gros nombre, lui-même produit de deux très gros nombres premiers.

Dans ce texte, nous allons présenter la théorie des cardinaux, du moins son début : définition, cardinal d'un ensemble et théorème de Cantor-Bernstein, addition et multiplication cardinale. En revanche, nous passerons sous silence le problème de l'exponentiation cardinale, qui est autrement plus compliquée.

Nous introduisons la notion d'ordinal de la façon la plus élémentaire possible, afin d'en présenter quelques propriétés, qui nous ont paru les plus importantes. Nous ne prétendons pas en faire une étude complète : par exemple, nous passons sous silence les notions d'addition, de multiplication ou d'exponentiation ordinale, qui sont des notions plus difficiles qu'il n'y paraît et mériteraient plus de travail.

Ayant construit les rationnels, voici bien sûr les réels, par la méthode des suites de Cauchy. Comme pour les rationnels, il faut vérifier que le nouvel ensemble étends celui des rationnels, et que les opérations, la relation d'ordre, la valeur absolue, se prolongent à l'ensemble des réels. Puis, sans bien sûr épuiser le sujet, nous nous penchons sur les propriétés topologiques de l'ensemble des réels : complétude, propriété de la borne supérieure ; propriétés qui sont à la base de toute l'analyse réelle.

Ayant construit les entiers naturels, quoi de plus naturel que de passer aux entiers relatifs. Là aussi, la présentation choisie est la plus axiomatique et rigoureuse possible. Partant de la définition des relatifs, vus comme des classes d'équivalence pour une relation d'équivalence bien choisie sur les couples d'entiers naturels, on en arrive peu à peu jusqu'à l'arithmétique élémentaire.

Dans la droite ligne des constructions précédentes, nous construisons ici l'ensemble des rationnels, à partir d'une relation d'équivalence sur les couples de relatifs. Nous définissons les opérations plus et multiplier sur ce nouvel ensemble, la relation d'ordre, etc, en montrant que tout ceci prolonge en réalité les opérations déjà définies pour les relatifs.

Nous présentons ici une définition et l'étude des propriétés élémentaires de l'ensemble des entiers naturels, définis dans le cadre axiomatique de la théorie des ensembles. Nous utilisons ces propriétés sans y penser, elles nous semblent évidentes... Mais peut-être méritent elles parfois que l'on s'y attarde quelque peu ?

Si l'on prends six personnes au hasard, alors trois d'entre elles se connaissent, ou alors on peut en trouver trois dont aucune ne se connaissent. Cette remarque, en apparence anodine, permet de déboucher sur toute une théorie combinatoire. En effet, reformulée en termes de graphe, cela signifie que, si l'on colorie les arêtes du graphe complet à six sommet en deux couleurs, alors on peut trouver un triangle dont les trois arêtes sont de la même couleur. La question se pose alors pour d'autres type de configurations, et l'on verra que le résultat reste valable à condition de colorier les arêtes d'un graphe suffisamment gros.

Le "Berlekamp's switching game'' est un jeu inventé par Elwin R. Berlekamp et David Gale. Son support est un tableau carré de m*m ampoules, contrôlées par 2m interrupteurs frontaux, un pour chaque ligne ou colonne. Quand un interrupteur est basculé, les ampoules qui étaient allumées dans la ligne ou la colonne correspondante sont éteintes, et celles qui étaient éteintes sont allumées. Le jeu consiste à trouver, pour un état initial donné, le nombre minimal d'ampoules allumées après manipulation à volonté des interrupteurs commandant les lignes et les colonnes, puis à maximiser ce nombre par un choix judicieux de l'état initial.

La percolation est un phénomène physique que l'on rencontre bien sûr lorsque l'on étudie le passage de la vapeur à travers du café, mais également des situations aussi diverses que la propagation d'un incendie de forêt, la circulation automobile, la conductivité électrique d'une alliage... Nous introduisons ici cette théorie, partant de la notion de graphe aléatoire. Nous verrons notamment qu'il existe une notion de probabilité critique, c'est-à-dire un seuil tel qu'en-dessous la probabilité d'avoir un phénomène de percolation est nulle, et égale à 1 au-delà.
Nous nous pencherons plus particulièrement sur les cas des arbres infinis et des réseaux cubiques.