Programmes

Question du jeudi #37 : Ana aime le hasard et déteste la monotonie. Tous les matins, elle tire à pile ou face sa boisson pour le petit déjeûner : thé ou café. Elle souhaite ainsi éviter de boire la même chose trois jours de suite. Au bout de n jours, quelle est la probabilité que sa règle de non-monotonie ait été respectée ?

Question du jeudi #36 : On se donne $n$ vecteurs $\vec v_1, \ldots, \vec v_n$ du plan dont la somme des longueurs vaut $1$. Montrer qu'il est possible de trouver une partie $S \subset \{1, 2, \ldots, n\}$ telle que la somme correspondante \[ \sum_{i \in S} \vec v_i\] ait une longueur au moins égale à $\frac 16$.

Cet article a pour but de souligner l'intérêt des résultats sur les chaînes de Markov dans le contexte de la cinétique des gaz. Les notions seront abordées progressivement dans un souci d'apporter un maximum d'intuition tout en évitant un excès de formalisme.

L'étude que je propose repose sur la question inhabituelle suivante : vous êtes en train de cuisiner et vous mettez au four la tarte que vous venez de préparer. Un moment d'inattention et quelques événements imprévus... vous oubliez votre préparation. Le drame se produit ! Déjà, trop tard ! votre œuvre est carbonisée et votre logement est enfumé. Comme vous le faites habituellement, vous vous précipitez et vous ouvrez toutes les fenêtres. En pensant bien faire, vous vous dites : « pour aérer, il suffit que je laisse mes fenêtres ouvertes le plus longtemps possible. » Est-ce une erreur ? Prenez-vous le risque que la fumée revienne en laissant vos fenêtres ouvertes trop longtemps ?

Dans cet article nous allons essayer de répondre à cette question. Pour y parvenir, nous essayerons d'analyser avec un maximum d'intuition les phénomènes liés au temps d'attente.

La plupart des notions abordées pourront être réutilisées dans l'introduction des probabilités au collège, au lycée et faire l'objet de sujets détaillés dans l'enseignement supérieur. Ce thème pourrait également faire l'objet d'une approche pluridisciplinaire. La dernière partie propose une activité pour le collège, un sujet détaillé niveau lycée et un sujet niveau supérieur reprenant pas à pas la démonstration d'un des principaux théorèmes.

Auteurs : François Laurent et Aurélien Lecureur, Collège Ernest Renan (Saint-Herblain).

Mots-clefs : Jeux de ficelle, Accompagnement Personnalisé, Travail en groupe, Socle commun

Dans son film Kaninikula, mathématiques aux îles Trobriand, et ses articles, disponibles sur Culture Math, Éric Vandendriessche nous invite à découvrir la richesse des jeux de ficelle pratiqués en Nouvelle-Guinée.

En nous inspirant de ses travaux, nous avons organisé deux ateliers avec des élèves de cinquième sur les jeux de ficelle. Cet article présente un bilan de ces ateliers ainsi que quelques jeux de ficelle de difficultés progressives.

Auteur : Anne Chomel, Lycée Jean-Baptiste Say (Paris)

Mots-clefs : fonction, théorème de Thalès, équation, inéquation, résolution approchée d'équations, patron, géométrie dans l'espace, algorithme de dichotomie, condition nécessaire et suffisante.

Cette activité d’étude et de recherche permet d’introduire ou bien de réinvestir des notions nouvelles ou des méthodes spécifiques du programme de seconde à travers une problématique donnée : comparer des volumes. Elle est divisée en paragraphes qui peuvent être traités à des moments différents durant l’année. Elle permet notamment de donner un sens au calcul algébrique qui valide ici les solutions d’une équation trouvées graphiquement ou par une méthode algorithmique. Par ailleurs, la résolution des différentes questions donne l’occasion de travailler de façon pratiquement exhaustive les compétences mathématiques. Plusieurs questions de cette activité peuvent être déjà abordées en classe de troisième.

Auteur : Maxime Bourrigan, École Normale Supérieure

Mots-clefs : Arithmétique, Algorithme, PGCD

Le but de ce document est d'introduire les propriétés les plus élémentaires du PGCD et de l'algorithme d'Euclide, tout d'abord de façon très directe, puis en abordant dans un second temps les propriétés liées au théorème de Bézout. Dans une partie intermédiaire, on propose une implémentation de l'algorithme d'Euclide à l'aide du logiciel Algobox.

 

Question du jeudi #34 : On rappelle qu'un triangle est dit acutangle si tous ses angles sont aigus, c'est-à-dire strictement inférieurs à 90°.

Est-il toujours possible de décomposer un triangle en triangles acutangles ? Si oui, quel est le nombre minimum de triangles dans la décomposition ?

Question du jeudi #28 : On veut traverser le plus vite possible un long couloir, dont un tronçon est équipé d'un tapis roulant. Votre lacet est défait : vaut-il mieux le renouer sur le tapis roulant, hors du tapis roulant, ou est-ce sans importance ?

Question du jeudi #25 : Vous êtes au centre d'une piscine circulaire, au bord de laquelle se trouve un lion. Est-il possible de sortir de la piscine en toute sécurité (c'est-à-dire d'arriver à un point du bord de la piscine où ne se trouve pas le lion), sachant que le lion se déplace quatre fois plus vite que vous ?

Titre : Nombres à compter et à raconter

Auteur : Stella Baruk

Éditeur : Le Seuil

Prix : 13,5 €