Programmes

Nous allons nous intéresser ici au nombre de manières de ranger des boules dans des boîtes. Problème classique s'il en est : nombre d'arrangements, nombre de combinaisons... Contrairement aux apparences, ce problème n'est pas toujours si simple lorsque l'on s'impose comme ici une contrainte supplémentaire : les boîtes sont indistinguables les unes des autres. Là, les choses se compliquent !

Les processus de branchement sont des modèles introduits pour étudier le développement d'une population, dans laquelle les individus se reproduisent indépendamment les uns des autres, et selon la même loi de probabilité. Introduit au 19ème siècle pour étudier la probabilité d'extinction de noms de familles illustres en Grande Bretagne, le modèle de Galton-Watson et ses variantes trouve de nombreuses applications en biologie ou en physique nucléaire.

Parmi les problèmes les plus célèbres en mathématiques, la construction des polygones réguliers à la règle et au compas possède une place de choix puisqu'elle a tenu en haleine les mathématiciens pendant plus de vingt siècles. Il a fallut attendre les travaux du mathématicien allemand Gauss pour que la question soit entièrement résolue.

Reste encore un pas à franchir dans nos extensions d'ensembles de nombres. Certaines équations algébriques extrêmement simples, à coefficients réels, restent sans solution réelle (par exemple, les réels négatifs ne sont pas les carrés de réels). D'où la nécessité d'étendre encore une fois notre ensemble de nombres, en formant un sur-corps du corps des réels, dont les éléments seront appelés nombres complexes. Ce sur-corps se révélera algébriquement clos, c'est-à-dire que cette fois toute équation algébrique (à coefficients complexes) aura des solutions (complexes).

Lorsque l'on bat un jeu de cartes, selon le procédé classique qui consiste à couper le paquet en deux parties puis à alterner les cartes des deux parties pour reformer un seul tas (puis à recommencer l'opération un certain nombre de fois), le but est bien sûr qu'aucun joueur ne puisse deviner l'ordre des cartes après battage. Manifestement, si l'on ne bat qu'une seule fois, un joueur attentif qui connaissait l'ordre initial des cartes dispose encore de certaines informations. D'où la question de savoir combien de fois il faut battre le paquet de cartes pour qu'il soit "bien mélangé".

Comment empiler efficacement des oranges (ou tout autre fruit sphérique) de façon à obtenir un tas occupant aussi peu de volume que possible ? Est-il préférable d'empiler des couches où les fruits sont disposés en carrés, ou une disposition en triangles est-elle plus efficace ?

Si l'on trace les cercles circonscrits aux cinq triangles correspondant aux "branches" d'une étoile à cinq branches, on s'aperçoit que les points d'intersection de chacun de ces cercles avec le suivant sont cocycliques !
Ce problème de géométrie assez classique à été remis au goût du jour par le président chinois, à l'occasion du congrès international des mathématiciens (Pékin, août 2002).

Étant donné un cercle, si l'on trace une corde au hasard sur ce cercle, quelle est la probabilité pour que celle-ci soit plus longue que le rayon du cercle ? Cette question, connue sous le nom de "paradoxe" de la corde de Bertrand, est particulièrement judicieuse pour illustrer la notion de mesure de probabilité. Nous allons voir que la réponse varie en fonction du mode de construction, chaque façon de penser étant lié à une mesure particulière.

On connaît des formules de dérivation à un ordre quelconque pour un produit de fonction (formule de Leibnitz). Pour ce qui est d'une somme de fonctions, c'est encore plus évident : la dérivée n-ième de la somme est la somme des dérivées n-ièmes, par linéarité. En revanche, pour ce qui est de la composée de deux fonctions, on ne sais pas faire... Nous allons voir ici que le problème se transpose en quelque chose de purement combinatoire sur les arbres.

L'équation de la chaleur est à l'origine de nombreux problèmes, souvent difficiles, et a fait couler beaucoup d'encre. Nous nous restreignons ici à un cas particulier, avec des conditions de départs assez simple, de sorte que la solution exacte soit connue. Celle-ci va nous permettre d'apprécier l'efficacité (ou les défauts) des méthode numériques de résolution approchée.