CultureMath
Quelques notions élémentaires de théorie des groupes : définition d'une action de groupe, du groupe des transformations d'une figure.
Ce texte en deux parties a pour but d'introduire les lecteurs à cette avancée majeure du dix-neuvième siècle qu'est la notion de groupe. Il a été écrit afin de servir d'appoint aux candidats à l'agrégation interne ou externe, mais aussi pour toute personne désireuse de se cultiver !
Du compact-disc, au DVD, en passant par l'appareil photo numérique, le scanner, et une hypothétique télévision numérique (plus en panne politique que technologique), le numérique a fait une entrée progressive mais écrasante et sans doute irréversible dans la vie quotidienne. Ce n'est évidemment pas sans raison : pour le meilleur et pour le pire, les signaux numériques sont plus simple à dupliquer (et donc à diffuser), ils peuvent être efficacement compressés et transmis, ils sont faciles à stocker, et on peut aisément les manipuler.
Le "petit théorème de Fermat" est un bijou de simplicité et d'utilité. Depuis sa découverte il y a plus de 400 ans par Fermat, on l'a redémontré d'au moins 100 manières différentes ! Dans ce texte, à la limite des programmes d'arithmétique de terminale scientifique, nous vous proposons de (re)découvrir ce petit joyau sous plusieurs points de vue, ainsi que des applications (Wilson) et des réciproques partielles.
L'expérience du dessin de plans et la curiosité scientifique de Gaspard Monge ont à notre avis influencé sa manière, très visuelle, de raisonner en mathématiques. Il était aussi un enseignant remarquable. Le souci de former les futurs cadres de la nation, donc d'expliquer à la fois les notions mathématiques et leurs éventuelles applications est sans doute lié à son besoin de voir et de représenter de manière précise les objets mathématiques qu'il définit.
Ce texte a une forme inhabituelle sur ce site : c'est un problème destiné à explorer certaines propriétés de l'hyperbole y = 1/x. Il mélange géométrie plane, géométrie analytique et utilisation des moyens de calcul modernes, et pourra donner des idées d'exercices aux professeurs... tout en leur pemettant de s'exercer !
C. F. Gauss est toujours considéré par certains comme le plus grand mathématicien de tous les temps. Sa capacité calculatoire hors du commun, couplée à son goût pour la contemplation des idées abstraites l'on amené à résoudre des problèmes (parfois vieux de millénaires !) et à envisager avec une clarté géniale (bien qu'inquiète) les idées qui feraient les mathématiques du futur.
Quand on découvre les mathématiques, on étudie des formes et des nombres. Une manière usuelle d'associer des nombres à une forme est de mesurer des longueurs. Ce texte nous présente de façon intuitive les notions de courbure et de torsion des courbes et des surfaces, et présente un théorème classique sur la courbure des nœuds...
Dans un article de 1950, devenu justement célèbre, Alan Turing propose, en vue d'opérer une comparaison fonctionnelle entre le cerveau et la machine, un jeu qu'il appelle "jeu de l'imitation". Cet article fut un pas décisif dans le domaine de la philosophie de la connaissance.
Le texte que nous vous proposons présente un point de vue cognitif sur la question de la différence entre la pensée humaine, continue, et le fonctionnement d'une machine à états discrets.
Ce texte est une présentation systématique de deux théories de l'intégration : celle de Riemann et celle de Lebesgue. Ces deux cadres sont décrits par le menu, ainsi que les résultats les plus marquants (le plus souvent sans démonstration). L'objectif de ce texte est de servir de référence rapide pour la lecture d'autres textes, ou pour avoir une idée d'ensemble de ces théories sans devoir se plonger dans les détails les plus techniques, ou acquérir au prélable trop de connaissances abstraites.