CultureMath
Ressources adaptées au programme de mathématiques de seconde
Le programme de seconde (rentrée 2009) est disponible en version pdf.
Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.
Deux capacités transversales (objectifs pour le lycée) :
Quelle part prennent les sciences et les techniques dans les événements qui façonnent une culture ? Comment, et avec quels effets les contingences de l’histoire atteignent-elles la sphère scientifique ? L’enseignement en général – celui des sciences en particulier – ignore bien souvent ces questions. Elles sont ici posées à propos des mathématiques. Interroger leur place dans la cité, c’est observer la trame d’échanges, d’influences, de déterminations qui se tisse entre la science, la politique et l’économie.
Tout le monde sait distinguer premier, second et dernier, ou encore un, deux et beaucoup. Mais comment construire le nombre abstrait, c’est-à-dire développer et articuler entre elles : la capacité « ordinale » de distinguer des entités sur la seule base de leur rang dans une suite, et la capacité « cardinale » de déterminer des quantités hétéroclites par la seule propriété d’avoir le même nombre d’éléments ou d’être de même mesure ? On comprend qu’il s’agit d’une longue aventure humaine collective en observant comment s’écrivent les grands nombres dans différentes parties du monde.
La mesure, d’après les racines sanscrites du mot a pour premier sens non pas celui de « pensée », de connaissance et de mensuration, mais celui d’équilibre modéré (celui du corps qui recouvre la santé ou d’un ensemble social bien géré). La racine med (médéor guérir) a donné médecine.
Table des matières du Compendy de la praticque des nombres.
Le Compendy de la praticque des nombres, une arithmétique du XVe siècle à mi-chemin entre théorie et pratique commerciale.
Le Compendy de la practique des nombres est un traité d’arithmétique écrit à la fin du XV° siècle à Lyon par un Frère Dominicain, Barthélemy de Romans. Le manuscrit est aujourd’hui conservé à la Bibliothèque Malatestiana de Cesena en Romagne (Italie). Après un bref exposé du calcul écrit utilisant la numération indo-arabe, qui se répand à cette époque dans les milieux marchands en Europe du sud (numération positionnelle, opérations sur les entiers et les fractions, calcul approché de racines carrées ou cubiques), la majeure partie de l'ouvrage est consacrée à la résolution très approfondie de quelques types de problèmes linéaires. Il témoigne d’une volonté enseignante forte de la part de son auteur, notamment en direction de la formation des marchands. Mais son style montre aussi des ambitions scientifiques inhabituelles. Le traité présente en fait peu d'intérêt pour un marchand : la première partie est trop réduite pour apporter l’essentiel et la seconde est inutile à la pratique commerciale. S’il fallait le rebaptiser, on pourrait le qualifier d’essai, un essai sur quatre problèmes, destiné à illuminer l’entendement de ceulx qui vouldroient veoir les subtilitez qui y sont contenues ».
Au début du IIe millénaire avant J.-C., les habitants de la cité-Etat d'Assur, sur le Tigre, dans le nord de l'Irak actuel, organisent des échanges à longue distance avec l'Asie Mineure. Ils y exportent de l'étain et des étoffes et rapportent chez eux de l'or et de l'argent. Ils créent en Anatolie centrale plusieurs dizaines de comptoirs commerciaux, dont le principal, situé à Kanis (site moderne de Kültepe), proche de l'actuelle Kayseri, a livré plus de 23 000 tablettes cunéiformes datées des XIXe et XVIIIe siècles avant J.-C. Cette documentation privée, dite «paléo-assyrienne», constitue le premier témoignage écrit d'un système commercial complexe fondé sur des échanges internationaux; elle révèle en outre le niveau des connaissances de ses auteurs en matière de calcul.
Grâce à un ensemble de textes et de fiches pratiques, l'auteur combine une approche historique et une étude didactique de l'instrumentation mathématique, puis montre comment apprendre à calculer à l'école et au collège en fabriquant des instruments.
La géométrie occidentale a vraisemblablement connu ses prémices au bord de l’Euphrate, puis du Nil avec la civilisation pharaonique. Il faut toutefois traverser les siècles et la Méditerranée pour trouver une approche mathématisée du calcul des surfaces...
Le Compendy de la praticque des nombres, second traité du manuscrit S-XXVI-6 conservé à la Bibliothèque Malatestiana de Cesena en Italie, est au centre de ce travail. Il s’agit d’un traité d’algorisme affilié au groupe des « arithmétiques commerciales » françaises de la fin du Moyen Âge...