CultureMath
- Généralités
- Logique
- Mathématiques discrètes, algorithmique
- Algèbre
- Arithmétique
- Géométrie
- Topologie
- Analyse
- Probabilités
- Statistique
- Analyse numérique
- Interactions des mathématiques
- Mathématiques et physique
- Mathématiques et sciences de la vie
- Mathématiques et économie
- Mathématiques et autres disciplines
- Histoire des mathématiques
- Histoire : généralités
- Histoire : Mésopotamie
- Histoire : Grèce
- Histoire : autres mathématiques anciennes
- Histoire : Europe (jusqu'au dix-huitième siècle)
- Histoire : Europe (à partir du dix-neuvième siècle)
- Didactique, histoire de l'enseignement
- Épistémologie
- Ethnomathématiques
-
Programmes > Supérieur
Réduction des endomorphismes . Tableaux de Young - Cône nilpotent - Représentations des algèbres de lie semi-simples, Rached Mneimné, Editions Calvage & Mounet (2006)
L'auteur est maître de conférences à l'Université Paris 7 - Denis Diderot, membre de l'équipe "Théorie des groupes, représentations et applications" de l'Institut de mathématiques de Jussieu.
Le public visé est celui des étudiants de licence, master, classes préparatoires, préparation au CAPES et à l'agrégation, et leurs professeurs.
Présentation par l'éditeur
La réduite de Jordan et les tableaux de Young constituent le thème principal du présent ouvrage. La maîtrise de la réduction s'acquiert par un retour attentif et critique sur les fondements, depuis les valeurs propres jusqu'à la géométrie des classes de similitude. Ainsi l'apparente complexité du cas nilpotent s'estompe-t-elle lorsque l'on se ramène à la combinatoire élémentaire des tableaux de Young. Le chemin est alors libre vers l'apprentissage des représentations de l'algèbre de Lie des matrices d'ordre deux de trace nulle, véritable génome de la théorie des représentations des algèbres de Lie semi-simples. Les liens subtils entre la réduction de Jordan et les sl 2-triplets sont alors mis a contribution pour comprendre la structure des algèbres de Lie semi-simples, leurs sous-algèbres de Cartan et les systèmes de racines qui leur sont associés. Les représentations irréductibles de dimension finie de ces algèbres de Lie sont étudiées et apparaissent alors comme un développement naturel de la réduction simultanée.
"... J'ai eu le temps de jeter un oeil à ton pavé "Réduction des endomorphismes",pas aussi longtemps que j'aurais voulu, mais suffisamment pour que je comprenne que tu as à nouveau ciselé un beau bijou. Je dis bijou car c'est la première image qui m'est venue à l'esprit en le parcourant. C'est une mine de très jolis résultats qui peut être extrêmement utile aux enseignants du Supérieur et je suppose aux professeurs des meilleures taupes parisiennes, et peut-être aux meilleurs de leurs élèves."
Christian Kassel
"... Je viens de passer la semaine dernière à lire (des parties de) votre manuscrit. Il s'agit bien de fleurs, de beaucoup de fleurs, des fleurs communes et des rares inconnues de moi, un champ de fleurs..."
Pierre Gabriel
Pour plus d'informations, voir le site de l'éditeur.
- Vade-mecum Clubs de mathématiques
- Brève 35 : Publimath | 50 ans des IREM
- Les algorithmes gloutons
- Brève 34 : L’intégrale de 1981 à nos jours : deux brochures pour témoigner des réformes | 50 ans des IREM
- Les laboratoires de mathématiques à l'international
- Brève 33 : Promotion d’une perspective historique en classe | 50 ans des IREM
- Brève 32 : Agrandir, réduire | 50 ans des IREM
- Brève 31 : La formation à distance des professeurs d’école | 50 ans des IREM
- Brève 30 : Deux réformes fondamentales de l’enseignement des mathématiques | 50 ans des IREM
- Brève 29 : Interdisciplinarité | 50 ans des IREM