CultureMath
- Généralités
- Logique
- Mathématiques discrètes, algorithmique
- Algèbre
- Arithmétique
- Géométrie
- Topologie
- Analyse
- Probabilités
- Statistique
- Analyse numérique
- Interactions des mathématiques
- Mathématiques et physique
- Mathématiques et sciences de la vie
- Mathématiques et économie
- Mathématiques et autres disciplines
- Histoire des mathématiques
- Histoire : généralités
- Histoire : Mésopotamie
- Histoire : Grèce
- Histoire : autres mathématiques anciennes
- Histoire : Europe (jusqu'au dix-huitième siècle)
- Histoire : Europe (à partir du dix-neuvième siècle)
- Didactique, histoire de l'enseignement
- Épistémologie
- Ethnomathématiques
Paru en 2008 aux éditions Ellipses.
Auteur : Claude Tricot
Il n’est pas besoin de longs détours pour aborder l’analyse fractale. Topologie, algèbre linéaire, probabilités… Ce qui peut servir est introduit ou rappelé dans cet ouvrage. D’où sa longueur relative, mais le but est de permettre au lecteur de faire une précieuse économie de temps, celui de la lecture préalable de manuels spécialisés. Les deux notions essentielles sont celle d’orbite et celle de mesure. Les premiers chapitres étudient les orbites d’un point par une application contractante, puis les orbites d’un ensemble par une famille d’applications contractantes. Comment prévoir la forme d’un attracteur ? Pourquoi des valeurs propres complexes introduisent-elles un effet de spirale ? La deuxième partie traite de la dimension de boîtes (la dimension fractale des expérimentateurs), puis viennent les dimensions de recouvrement (Hausdorff) et d’empilement (packing dimension) et l’analyse des mesures fractales.
Ce livre s’adresse avant tout à l’étudiant ou au chercheur non spécialisé. Des exercices, dont certains sont des applications immédiates du texte, sont donnés au fil de la lecture, avec solutions dans le dernier chapitre. L’enseignant y trouvera aussi un certain nombre de sujets de réflexion pouvant servir à des projets de fin d’études. Les développements mathématiques sont traités d’une manière constructive, et autant que possible, géométrique. D’où le nombre des figures.
- Vade-mecum Clubs de mathématiques
- Brève 35 : Publimath | 50 ans des IREM
- Les algorithmes gloutons
- Brève 34 : L’intégrale de 1981 à nos jours : deux brochures pour témoigner des réformes | 50 ans des IREM
- Les laboratoires de mathématiques à l'international
- Brève 33 : Promotion d’une perspective historique en classe | 50 ans des IREM
- Brève 32 : Agrandir, réduire | 50 ans des IREM
- Brève 31 : La formation à distance des professeurs d’école | 50 ans des IREM
- Brève 30 : Deux réformes fondamentales de l’enseignement des mathématiques | 50 ans des IREM
- Brève 29 : Interdisciplinarité | 50 ans des IREM