CultureMath
- Généralités
- Logique
- Mathématiques discrètes, algorithmique
- Algèbre
- Arithmétique
- Géométrie
- Topologie
- Analyse
- Probabilités
- Statistique
- Analyse numérique
- Interactions des mathématiques
- Mathématiques et physique
- Mathématiques et sciences de la vie
- Mathématiques et économie
- Mathématiques et autres disciplines
- Histoire des mathématiques
- Histoire : généralités
- Histoire : Mésopotamie
- Histoire : Grèce
- Histoire : autres mathématiques anciennes
- Histoire : Europe (jusqu'au dix-huitième siècle)
- Histoire : Europe (à partir du dix-neuvième siècle)
- Didactique, histoire de l'enseignement
- Épistémologie
- Ethnomathématiques
-
Programmes > Supérieur
Les mathématiques de l'information
Claude Shannon et la compression des données
Gabriel Peyré, CNRS, ENS
11 mai 2017
L’immense majorité des données (texte, son, image, vidéo, etc.) sont stockées et manipulées sous forme numérique, c’est-à-dire à l’aide de nombres entiers qui sont convertis en une succession de bits (des 0 et des 1). La conversion depuis le monde analogique continu vers ces représentations numériques discrètes est décrite par la théorie élaborée par Claude Shannon (30 avril 1916 - 24 février 2001), le père fondateur de la théorie de l’information. L’impact de cette théorie sur notre société est absolument colossal. Sur le plan théorique, Shannon a montré que si l’on modélise le message à coder comme étant généré par une sources aléatoire, alors le nombre de bits par symbole minimum pour coder ce message est égal à l’entropie de la source. J’expliquerais la signification et les implications pratiques de ce théorème, et je le démontrerais. J’expliquerais aussi comment on peut calculer efficacement des codes atteignant la borne minimum de l’entropie à l’aide des arbres de Huffman. Un texte grand public (sans les preuves mathématiques) est disponible sur le site "Images des mathématiques" et les programmes informatiques correspondants sont disponibles en ligne.
- Vade-mecum Clubs de mathématiques
- Brève 35 : Publimath | 50 ans des IREM
- Les algorithmes gloutons
- Brève 34 : L’intégrale de 1981 à nos jours : deux brochures pour témoigner des réformes | 50 ans des IREM
- Les laboratoires de mathématiques à l'international
- Brève 33 : Promotion d’une perspective historique en classe | 50 ans des IREM
- Brève 32 : Agrandir, réduire | 50 ans des IREM
- Brève 31 : La formation à distance des professeurs d’école | 50 ans des IREM
- Brève 30 : Deux réformes fondamentales de l’enseignement des mathématiques | 50 ans des IREM
- Brève 29 : Interdisciplinarité | 50 ans des IREM