CultureMath
Site de ressources mathématiques pour les enseignants
Formats
Programmes
Thèmes
- Généralités
- Logique
- Mathématiques discrètes, algorithmique
- Algèbre
- Arithmétique
- Géométrie
- Topologie
- Analyse
- Probabilités
- Statistique
- Analyse numérique
- Interactions des mathématiques
- Mathématiques et physique
- Mathématiques et sciences de la vie
- Mathématiques et économie
- Mathématiques et autres disciplines
- Histoire des mathématiques
- Histoire : généralités
- Histoire : Mésopotamie
- Histoire : Grèce
- Histoire : autres mathématiques anciennes
- Histoire : Europe (jusqu'au dix-huitième siècle)
- Histoire : Europe (à partir du dix-neuvième siècle)
- Didactique, histoire de l'enseignement
- Épistémologie
- Ethnomathématiques
Publié le 09/01/2003
- Thèmes > Mathématiques discrètes, algorithmique ,
Résumé
À quelle condition peut-on dessiner un graphe dans le plan, sans que ne se croisent des arêtes dudit graphe ? Le problème est assez classique : on connaît des condition nécessaires, qui dérivent de la formule d'Euler. Nous introduisons ici ces résultats, en montrant quelques applications sur des graphes particuliers.
Il existe également une caractérisation exacte, dûe au mathématicien Polonais Kuratovsky, que nous présentons à la fin de ce texte.
Par Thomas Chomette, ENS
Prérequis :
Aucun.
Importer l'article en version ps ou pdf.
Dernières publications
- Vade-mecum Clubs de mathématiques
- Brève 35 : Publimath | 50 ans des IREM
- Les algorithmes gloutons
- Brève 34 : L’intégrale de 1981 à nos jours : deux brochures pour témoigner des réformes | 50 ans des IREM
- Les laboratoires de mathématiques à l'international
- Brève 33 : Promotion d’une perspective historique en classe | 50 ans des IREM
- Brève 32 : Agrandir, réduire | 50 ans des IREM
- Brève 31 : La formation à distance des professeurs d’école | 50 ans des IREM
- Brève 30 : Deux réformes fondamentales de l’enseignement des mathématiques | 50 ans des IREM
- Brève 29 : Interdisciplinarité | 50 ans des IREM