Nombres rationnels

1 Définition de Q

On définit, sur l'ensemble $\mathbb{Z} \times \mathbb{Z}^*$, la relation binaire \mathfrak{R} de la façon suivante :

$$(a,b)\Re(a',b') \iff ab'=ba'$$

Propriété 1.1 \Re est une relation d'équivalence.

Démonstration:

- Réflexivité : Elle découle de la commutativité de la multiplication sur ℤ.
- Symétrie : Idem.
- Transitivité :

Soient (a,b), (a',b') et (a'',b'') tels que $(a,b)\Re(a',b')$ et $(a',b')\Re(a'',b'')$.

$$\left. \begin{array}{l} ab' = ba' \\ a'b'' = b'a'' \end{array} \right\} \Longrightarrow \quad aa'b'b'' = ba'b'a'' \quad \Longrightarrow \quad aa'b'' = ba'a''$$

Si $a' \neq 0$, on obtient ab'' = ba'' donc $(a, b)\Re(a'', b'')$.

Sinon, a' = 0 donc a = 0 et a'' = 0; on a encore ab'' = ba'' donc $(a,b)\Re(a'',b'')$.

Définition Un nombre rationnel est la classe d'équivalence d'un élément (a, b) de $\mathbb{Z} \times \mathbb{Z}^*$; on le note $\frac{a}{b}$. Et l'on note \mathbb{Q} l'ensemble quotient $\mathbb{Z} \times \mathbb{Z}^*/\mathfrak{R}$ des nombres rationnels.

N.B. Attention : $\frac{a}{b}$ n'est rien d'autre qu'une notation pour désigner le rationnel dont un représentant est le couple (a,b). Ceci justifie également toutes les égalités de type $\frac{a}{b} = \frac{c}{d}$, qui signifie que les deux rationnels sont égaux, mais absolument pas les deux représentants (a,b) et (c,d).

Définition a est appelé num'erateur du représentant (a,b) de $\frac{a}{b}$; b est appelé son d'enominateur.

Remarque Pour tout couple (a, b), on a :

$$\frac{0}{1} = \frac{a}{b} \iff a = 0$$

On note \mathbb{Q}^* l'ensemble $\mathbb{Q} \setminus \left\{ \frac{0}{1} \right\}$ des rationnels non nuls.

2 Représentants privilégiés d'un rationnel

Théorème 2.1 Soit $\frac{a}{b}$ un rationnel non nul. Alors il existe un unique couple (p,q) dans $\mathbb{Z}^* \times \mathbb{Z}_+^*$, appelé représentant irréductible de $\frac{a}{b}$, qui vérifie :

$$\frac{p}{q} = \frac{a}{b} \quad et \quad p \wedge q = 1$$

(où $p \wedge q$ désigne le PGCD des entiers p et q.)

Démonstration:

- Unicité:

Soit $(a, b) \in \mathbb{Z}^* \times \mathbb{Z}^*$. Soit un tel couple (p, q), vérifiant donc $\frac{p}{q} = \frac{a}{b}$, avec p et q premiers entre eux.

Soit $\delta = a \wedge b \in \mathbb{N}^*$, et a' et b' deux entiers vérifiant $a = \delta a'$ et $b = \delta b'$ (et donc $a' \wedge b' = 1$, cf le texte sur les entiers relatifs).

On a alors $p\delta b' = q\delta a'$ donc pb' = qa'. Comme $a' \wedge b' = 1$, on en déduit (lemme de Gauss) que p|a' (et q|b'). C'est-à-dire qu'il existe un entier k tel que a' = pk. Mais alors, en remplaçant a' par pk dans l'égalité pb' = qa', il vient après simplification par p:b'=qk. L'entier k est donc un diviseur commun de a' et b'.

Comme on a $a' \wedge b' = 1$, on obtient $k = \pm 1$, et donc (p,q) = (a',b') ou bien (p,q) = (-a',-b'). L'unicité découle alors de la condition q > 0.

- Existence:

Au signe près, le couple (a',b') construit vérifie la propriété voulue. Si b' < 0, il suffit de prendre le couple (-a',-b').

Propriété 2.2 Soient $\frac{a}{b}$ et $\frac{c}{d}$ deux rationnels. Soit μ le PPCM de b et d. Alors il existe deux entiers a_1 et c_1 tels que :

$$\frac{a}{b} = \frac{a_1}{\mu} \quad et \quad \frac{c}{d} = \frac{c_1}{\mu}$$

N.B. Effectuer une telle opération (déterminer les entiers a_1 et c_1) s'appelle réduire au même dénominateur les deux rationnels $\frac{a}{b}$ et $\frac{c}{d}$.

Démonstration : Soient en effet $\frac{a}{b}$ et $\frac{c}{d}$ deux rationnels, μ le PPCM de b et d. soient h et k deux entiers tels que $\mu = bh = dk$.

On vérifie sans problème que $(a,b)\Re(ah,bh)$, et donc que

$$\frac{a}{b} = \frac{a_1}{\mu}$$
, où l'on a posé $a_1 = ah$.

De même

$$\frac{c}{d} = \frac{c_1}{\mu}$$
, où l'on a posé $c_1 = ck$.

3 Opérations sur \mathbb{Q}

Addition 3.1

Soit, dans $\mathbb{Z} \times \mathbb{Z}^*$, l'addition définie par (a,b) + (c,d) = (ad + bc,bd). Cette addition est compatible avec la relation \Re , c'est-à-dire :

$$\left. \begin{array}{l} (a,b)\Re(a',b') \\ (c,d)\Re(c',d') \end{array} \right\} \Longrightarrow \quad \left((a,b) + (c,d) \right) \Re\left((a',b') + (c',d') \right)$$

En effet, la conclusion équivaut à $(ad + bc, bd)\Re(a'd' + b'c', b'd')$, c'est-à-dire à (ad+bc)b'd' = (a'd'+b'c')bd, soit encore adb'd'+bcb'd' = a'd'bd+b'c'bd, ce qui est vrai car par hypothèse ab' = a'b et cd' = c'd.

Cette addition définit donc par passage au quotient une opération (toujours appelée addition) sur \mathbb{Q} , en posant donc $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$

Théorème 3.1 $(\mathbb{Q},+)$ est un groupe commutatif.

Démonstration:

Commutativité :

Immédiat par commutativité de la multiplication et de l'addition sur \mathbb{Z} .

Soient $\frac{a}{b}$, $\frac{c}{d}$ et $\frac{e}{f}$ dans \mathbb{Q} . En posant $\mu = b \vee d \vee f$ (PPCM de b, d et f), on a trois entiers a_1 , c_1 et e_1 tels que :

$$\frac{a}{b} = \frac{a_1}{\mu}, \quad \frac{c}{d} = \frac{c_1}{\mu} \quad \text{et} \quad \frac{e}{f} = \frac{e_1}{\mu}$$

Après simplifications:

$$\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \left(\frac{a_1}{\mu} + \frac{c_1}{\mu}\right) + \frac{e_1}{\mu} = \frac{(a_1 + c_1) + e_1}{\mu}$$

$$\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a_1 + (c_1 + e_1)}{\mu}$$

On conclut alors par associativité de l'addition des entiers.

 $\frac{0}{1}$ est élément neutre pour l'addition :

$$\forall \frac{a}{b} \in \mathbb{Q}, \quad \frac{a}{b} + \frac{0}{1} = \frac{a \cdot 1 + 0 \cdot b}{b \cdot 1} = \frac{a}{b}$$

- Opposé de $\frac{a}{b}$:

$$\frac{a}{b} + \frac{-a}{b} = \frac{0}{b} = \frac{0}{1}$$

donc $\frac{a}{b}$ admet pour opposé $\frac{-a}{b}$, qui est donc aussi noté $-\frac{a}{b}$. On note également $\frac{a}{h} - \frac{c}{d}$ pour la différence $\frac{a}{h} + \left(-\frac{c}{d}\right)$.

3.2 Multiplication

De la même façon, on définit dans $\mathbb{Z} \times \mathbb{Z}^*$ la multiplication (notée \times) par $(a,b)\times(c,d)=(ac,bd)$. Elle est compatible avec \Re . Soient en effet quatres couples d'entiers $(a, b)\Re(a', b')$ et $(c, d)\Re(c', d')$.

Alors
$$ab' = ba'$$
 et $cd' = dc'$

Or
$$pa(a,b) \times (c,d) \Re ((a',b') \times (c',d')) \iff (ac,bd) \Re (a'c',b'd')$$

 $\iff acb'd' = bda'c'$

Cette dernière égalité découlant immédiatement des hypothèses, par multiplication terme à terme (dans \mathbb{Z}).

D'où par passage au quotient une multiplication sur \mathbb{Q} , définie par $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$

Théorème 3.2 $(\mathbb{Q}, +, \times)$ est un corps commutatif.

Démonstration : Puisqu'on sait déjà que $(\mathbb{Q}, +)$ est un groupe commutatif, il ne reste à démontrer que les propriétés relatives à la loi \times .

Commutativité :

Immédiat par commutativité de la multiplication dans \mathbb{Z} .

Associativité :

Idem, en utilisant l'associativité de la multiplication dans \mathbb{Z} .

- <u>Distributivité sur l'addition</u>: Soient $\frac{a}{b}$, $\frac{c}{d}$ et $\frac{e}{f}$ dans \mathbb{Q} . On a des entiers a_1 , c_1 et e_1 tels que

$$\frac{a}{b} = \frac{a_1}{\mu}, \quad \frac{c}{d} = \frac{c_1}{\mu} \quad \text{et} \quad \frac{e}{f} = \frac{e_1}{\mu} \quad (\text{avec } \mu = b \lor d \lor f)$$

Alors
$$\frac{a}{b} \times \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a_1}{\mu} \times \left(\frac{c_1}{\mu} + \frac{e_1}{\mu}\right) = \frac{a_1(c_1 + e_1)}{\mu^2} = \frac{a_1c_1 + a_1e_1}{\mu^2}$$

et
$$\frac{a}{b} \times \frac{c}{d} + \frac{a}{b} \times \frac{e}{f} = \frac{a_1}{\mu} \times \frac{c_1}{\mu} + \frac{a_1}{\mu} \times \frac{e_1}{\mu} = \frac{a_1c_1 + a_1e_1}{\mu^2}$$

La distributivité à droite en découle, grâce à la commutativité de la multiplication, déjà démontrée.

 $\frac{1}{1}$ est élément neutre :

$$\forall \frac{a}{b} \in \mathbb{Q}, \quad \frac{a}{b} \times \frac{1}{1} = \frac{a \cdot 1}{b \cdot 1} = \frac{a}{b}$$

- Inverse de $\frac{a}{b} \in \mathbb{Q}^*$:
Si $\frac{a}{b}$ est dans \mathbb{Q}^* , alors a est non nul, donc le rationnel $\frac{b}{a}$ est bien défini.

$$\frac{a}{b} \times \frac{b}{a} = \frac{ab}{ba} = \frac{1}{1}$$

donc $\frac{a}{b}$ est inversible et son inverse est $\frac{b}{a}$.

4 Relation d'ordre sur \mathbb{Q}

Remarque Pour tout rationnel $\alpha \in \mathbb{Q}^*$, pour tout représentant (a,b) de α , le signe du produit ab est constant (il ne dépend pas du représentant choisi).

En effet, soit (p,q) le représentant irréductible de α . On a un entier k tel que a=kp et b=kq, donc $ab=k^2pq$ a le signe de pq.

Définition $\frac{a}{b}$ est *strictement positif* si et seulement si ab > 0; $\frac{a}{b}$ est *strictement négatif* si et seulement si ab < 0.

Notations : On note \mathbb{Q}_+^* l'ensemble des rationnels strictement positifs, \mathbb{Q}_-^* l'ensemble des rationnels strictement négatifs ; on note \mathbb{Q}_+ (resp. \mathbb{Q}_-) l'ensemble $\mathbb{Q}_+^* \cup \left\{ \frac{0}{1} \right\}$ (resp. l'ensemble $\mathbb{Q}_-^* \cup \left\{ \frac{0}{1} \right\}$).

On a alors

$$\frac{a}{b} \in \mathbb{Q}_+ \iff ab \ge 0$$

En effet, si $\frac{a}{b} \in \mathbb{Q}_+^*$, alors ab > 0, et si $\frac{a}{b} = \frac{0}{1}$, alors ab = 0. Réciproquement, si ab > 0, alors $\frac{a}{b} \in \mathbb{Q}_+^*$ et si ab = 0, alors $\frac{a}{b} = \frac{0}{1}$

De même

$$\frac{a}{b} \in \mathbb{Q}_{-} \iff ab \leq 0$$

De ces propriété, on déduit des propriétés de signe de la somme et du produit de deux rationnels :

Propriété 4.1

$$\alpha, \beta \in \mathbb{Q}_+ \Longrightarrow \alpha + \beta \in \mathbb{Q}_+, \alpha\beta \in \mathbb{Q}_+$$

De même

$$\alpha, \beta \in \mathbb{Q}_- \Longrightarrow \alpha + \beta \in \mathbb{Q}_-, \alpha\beta \in \mathbb{Q}_+$$

Enfin

$$\alpha \in \mathbb{Q}_+, \beta \in \mathbb{Q}_- \Longrightarrow \alpha\beta \in \mathbb{Q}_-$$

On est désormais en mesure de définir la relation d'ordre sur $\mathbb Q$:

Définition On définit ainsi la relation binaire $\leq \sup \mathbb{Q}$:

$$\frac{a}{b} \le \frac{c}{d} \Longleftrightarrow \frac{c}{d} - \frac{a}{b} \in \mathbb{Q}_+$$

Théorème 4.2 \leq est une relation d'ordre total sur \mathbb{Q} .

Démonstration:

Réflexivité :

$$\frac{a}{b} - \frac{a}{b} = \frac{0}{1} \in \mathbb{Q}_+ \quad \text{donc} \quad \frac{a}{b} \le \frac{a}{b}$$

Antisymétrie :

$$\frac{\text{Antisymetrie}}{\text{Si } \frac{a}{b} \leq \frac{c}{d} \text{ et } \frac{c}{d} \leq \frac{a}{b}, \text{ alors } \frac{c}{d} - \frac{a}{b} \in \mathbb{Q}_+, \text{ et } \frac{a}{b} - \frac{c}{d} \in \mathbb{Q}_+, \text{ donc}}$$

$$\frac{c}{d} - \frac{a}{b} \in \mathbb{Q}_+ \cap \mathbb{Q}_- = \left\{ \frac{0}{1} \right\}$$

et donc

$$\frac{c}{d} = \frac{a}{b}$$

 $\begin{array}{l} -\frac{\text{Transitivit\'e}:}{\text{Si }\frac{a}{b} \leq \frac{c}{d} \leq \frac{e}{f}, \text{ alors }\frac{c}{d} - \frac{a}{b} \in \mathbb{Q}_+ \text{ et } \frac{e}{f} - \frac{c}{d} \in \mathbb{Q}_+. \text{ Or nous avons vu que } \\ \mathbb{Q}_+ \text{ est stable par la loi } +, \text{ donc} \end{array}$

$$\frac{e}{f} - \frac{a}{b} = \left(\frac{e}{f} - \frac{c}{d}\right) + \left(\frac{c}{d} - \frac{a}{b}\right) \in \mathbb{Q}_+ \quad \text{donc} \quad \frac{a}{b} \le \frac{e}{f}$$

- Ordre total:

On a $\mathbb{Q}_+ \cup \mathbb{Q}_- = \mathbb{Q}$, donc pour tout couple de rationnels $\left(\frac{a}{b}, \frac{c}{d}\right)$, la différence $\frac{c}{d} - \frac{a}{b}$ est nécessairement dans \mathbb{Q}_+ ou dans \mathbb{Q}_- . Selon les cas, on a alors $\frac{a}{b} \leq \frac{c}{d}$ ou bien $\frac{c}{d} \leq \frac{a}{b}$.

Remarque

Si $\frac{a}{b} \in \mathbb{Q}_-$ et $\frac{c}{d} \in \mathbb{Q}_+$, alors $\frac{a}{b} \le \frac{0}{1}$ et $\frac{0}{1} \le \frac{c}{d}$, donc par transitivité $\frac{a}{b} \le \frac{c}{d}$.

Propriété 4.3 La relation d'ordre \leq est compatible avec la loi + sur \mathbb{Q} , et avec la loi × sur \mathbb{Q}_+ .

Démonstration : Soient donc quatres rationnels $\frac{a}{b} \leq \frac{a'}{b'}$ et $\frac{c}{d} \leq \frac{c'}{d'}$. Alors on a $\frac{a'}{b'} - \frac{a}{b} \in \mathbb{Q}_+$ et $\frac{c'}{d'} - \frac{c}{d} \in \mathbb{Q}_+$, et donc en sommant :

$$\left(\frac{a'}{b'} - \frac{a}{b}\right) + \left(\frac{c'}{d'} - \frac{c}{d}\right) = \left(\frac{a'}{b'} + \frac{c'}{d'}\right) - \left(\frac{a}{b} + \frac{c}{d}\right) \in \mathbb{Q}_+$$

On a montré

$$\frac{a}{b} + \frac{c}{d} \le \frac{a'}{b'} + \frac{c'}{d'}$$

Supposons désormais de plus ces rationnels positifs. Quitte à réduire au même dénominateur, on peut supposer b=b'=d=d'. On a alors $0 \le a \le a'$ et $0 \le c \le c'$. donc (dans $\mathbb Z$) $ac \le a'c'$.

et $0 \le c \le c'$. donc (dans \mathbb{Z}) $ac \le a'c'$. On obtient $\frac{a'c' - ac}{b^2} \in \mathbb{Q}_+$, et donc

$$\frac{a}{b} \times \frac{c}{b} \le \frac{a'}{b} \times \frac{c'}{b}$$

Notation: (ordre strict sur \mathbb{Q})

On pose : $\frac{a}{b} < \frac{c}{d}$ si et seulement si :

$$\begin{cases}
\frac{a}{b} \le \frac{c}{d} \\
\frac{a}{b} \ne \frac{c}{d}
\end{cases}$$

Alors

$$\frac{a}{b} < \frac{c}{d} \Longleftrightarrow \frac{c}{d} - \frac{a}{b} \in \mathbb{Q}_+ \setminus \left\{ \frac{0}{1} \right\} = \mathbb{Q}_+^*$$

Définition Soit G un groupe (additif) ordonné.

– On note G_+ l'ensemble des éléments de G supérieurs ou égaux à l'élément neutre 0. G_+^* désignera l'ensemble $G_+ \setminus \{0\}$.

- Étant donné un élément a du groupe G, et n un entier naturel, n.a désigne l'élément $a+a+\cdots+a$ (n occurences de l'élément a).
- Le groupe G est dit archimédien s'il vérifie la propriété :

$$\forall b \in G_+ \forall a \in G_+^*, \exists n \in \mathbb{N}, \quad b \le n.a$$

Propriété 4.4 \mathbb{Q} est archimédien.

Démonstration : Soit en effet β un rationnel positif et α un rationnel strictement positif. Si $\beta = 0$, il n'y a rien à démontrer.

Sinon, quitte à réduire au même dénominateur (propriété 2.2), on peut supposer α de la forme $\frac{a}{q}$ et β de la forme $\frac{b}{q}$, où a,b et q sont des entiers naturels non nuls.

On a alors $a \geq 1$, et donc $a \times \beta \geq \beta$ (la relation d'ordre est compatible avec la multiplication, sur \mathbb{Q}_+). Or $a \times \beta = \frac{ab}{a} = b \times \alpha$, donc $b\alpha \geq \beta$.

5 Plongement de $\mathbb Z$ dans $\mathbb Q$

Soit \mathbb{Q}' l'ensemble $\left\{\frac{m}{1}, m \in \mathbb{Z}\right\}$. Il s'agit bien sûr d'un sous-ensemble de \mathbb{Q} . Il est immédiat de vérifier que \mathbb{Q}' est stable pour les lois + et \times (en revenant aux définitions de ces lois, on vérifie que $\frac{m}{1} + \frac{n}{1} = \frac{m+n}{1}$ et $\frac{m}{1} \times \frac{n}{1} = \frac{mn}{1}$); et que \mathbb{Q}' est également stable par passage à l'opposé pour la loi +. On en déduit que $(\mathbb{Q}', +, \times)$ est un sous-anneau de $(\mathbb{Q}, +, \times)$.

Soit l'application f, de \mathbb{Z} dans \mathbb{Q}' définie par $m \longmapsto \frac{m}{1}$. On a, d'après la remarque précédente, pour tous entiers m et n, les relations

$$f(m+n) = f(m) + f(n)$$
 et $f(mn) = f(m)f(n)$
 $\forall \frac{m}{1} \in \mathbb{Q}' \exists ! n \in \mathbb{Z}, \quad f(n) = \frac{m}{1}$
 $f(n) = \frac{m}{1} \iff \frac{n}{1} = \frac{m}{1} \iff n = m$

En effet

De plus

On a montré que f est un isomorphisme d'anneaux de $\mathbb Z$ sur $\mathbb Q'$

Enfin $f(m) \leq f(n) \Longleftrightarrow \frac{m}{1} \leq \frac{n}{1} \Longleftrightarrow \frac{m-n}{1} \leq \frac{0}{1} \Longleftrightarrow m-n \leq 0 \Longleftrightarrow m \leq n$, c'est-à-dire que l'isomorphisme f est compatible avec les relations d'ordre sur \mathbb{Z} et \mathbb{Q} .

Convention : On identifie, compte-tenu de l'isomorphisme f, \mathbb{Z} et \mathbb{Q}' en écrivant m le rationnel $\frac{m}{1}$ (en particulier : $0 = \frac{0}{1}$ et $1 = \frac{1}{1}$).

Ainsi, on a $\mathbb{Z} \subset \mathbb{Q}$; et les opérations + et \times sur \mathbb{Q} prolongent respectivement les opérations + et \times sur \mathbb{Z} ; l'ordre total \leq sur \mathbb{Q} prolonge quant à lui l'ordre total \leq sur \mathbb{Z} .

Remarque Avec cette écriture, on a

$$\frac{a}{b} = \frac{a \times 1}{1 \times b} = \frac{a}{1} \times \frac{1}{b} = a \times \frac{1}{b}$$

6 Valeur absolue sur Q

On définit sur \mathbb{Q} la valeur absolue en posant, pour tout rationnel α :

$$|\alpha| = \max(\alpha, -\alpha)$$

Cette définition est justifiée car on a montré que \leq est un ordre total sur \mathbb{Q} (et donc, pour tout rationnel α , l'ensemble $\{\alpha, -\alpha\}$ admet un plus grand élément). En particulier, on a $|-\alpha| = |\alpha|$ pour tout α .

Remarque Cette valeur absolue prolonge la valeur absolue déjà définie sur \mathbb{Z} .

Propriété 6.1 Pour tous α et β rationnels, on a

$$\alpha^2 = \beta^2 \iff |\alpha| = |\beta|$$

Démonstration:

 \implies Dans le corps \mathbb{Q} , on peut factoriser l'égalité $\alpha^2 = \beta^2$ pour obtenir $(\alpha - \beta)(\alpha + \beta) = 0$, donc $\alpha = \pm \beta$, ce qui entraı̂ne $|\alpha| = |\beta|$.

 \subseteq Si $\alpha \ge 0$ et $\beta \ge 0$, alors $|\alpha| = |\beta|$ entraı̂ne $\alpha = \beta$ et donc $\alpha^2 = \beta^2$.

Les autres cas se tritent de la même façon : si $\alpha \geq 0$ et $\beta \leq 0$, on obtient $\alpha = -\beta$ et donc $\alpha^2 = \beta^2$, et ainsi de suite.

Propriété 6.2 Pour tous rationnels α et β , on a $|\alpha\beta| = |\alpha| \times |\beta|$.

Démonstration : Il suffit là encore de distinguer les cas, en fonction des signes de α et β .

Propriété 6.3 *Pour tous rationnels* α *et* β , *on* $a |\alpha + \beta| \leq |\alpha| + |\beta|$.

Démonstration : Remarquons tout d'abord que pour tous rationnels positifs α et β , on a l'équivalence $\alpha \leq \beta \iff \alpha^2 \leq \beta^2$. En effet \Rightarrow s'obtient grâce à la compatibilité de \leq avec la multiplication (sur \mathbb{Q}_+), et \Leftarrow par contraposée, pour les mêmes raisons.

On peut alors raisonner par équivalence :

$$|\alpha + \beta| \le |\alpha| + |\beta| \iff |\alpha + \beta|^2 \le (|\alpha| + |\beta|)^2$$

$$\iff |(\alpha + \beta)^2| \le |\alpha|^2 + 2 |\alpha| |\beta| + |\beta|^2$$

$$\iff (\alpha + \beta)^2 \le \alpha^2 + 2 |\alpha| |\beta| + \beta^2$$

$$\iff 2\alpha\beta \le 2 |\alpha| |\beta|$$

Cette dernière inégalité étant toujours vraie (car $|\alpha| \times |\beta| = |\alpha\beta|$), il en est de même de la première...