Les épi ou hypo trochoïdes
Publié le 21/06/2006
Résumé

Cet article propose un classement complet des courbes trochoïdales obtenues par roulement sans glissement. L'auteur donne un tableau à double entrée qui permet suivant les divers paramètres (rayons du cercle de base, de roulement et rapport d'élongation) de donner immédiatement la forme de la courbe. La recherche des développées de ces courbes est une application exploitée.


La théorie complète du Centre Instantané de Rotation est donnée en annexe et donne donc aussi une utilisation cinématique à cet article géométrique. Ces problèmes de roulement se retrouvent dans les problèmes d'engrenages.

Des simulations animées se trouvent par exemple sur le site de Robert Férréol http://www.mathcurve.com/courbes2d/epitrochoid/epitrochoid.shtml et celui d'Alain Esculier : http://aesculier.fr/ (aller à Rubrique, Maple).

En particulier sur http://aesculier.fr/fichiersMaple/wondergraph/wondergraph.html, on verra un jouet "extraordinaire" datant de 1910, le Wondergraph, qui permet de tracer des courbes plus générales que les épi- et hypo-trochoïdes, obtenues elles-mêmes pour certains réglages particuliers (remarque: pour les liens vers les publicités -du Wondergraph- cliquer avec le click droit de la souris et ouvrir, ou bien désactiver votre anti-spam).

Par Lazare Georges Vidiani, Professeur de Mathématiques.

Importer l'article (version pdf, 15 pages)


 
Photos Vidiani
 
 
 
 
 
Dernières publications